
DEPARTMENT OF CSE                                                                                                              Page 1 of 13  

UNIT-4 
Greedy Method: 

The greedy method is perhaps (maybe or possible) the most straight forward design 

technique, used to determine a feasible solution that may or may not be optimal. 

 

Feasible solution:- Most problems have n inputs and its solution contains a subset of inputs 

that satisfies a given constraint(condition). Any subset that satisfies the constraint is called 

feasible solution. 

 

Optimal solution: To find a feasible solution that either maximizes or minimizes a given 

objective function. A feasible solution that does this is called optimal solution. 

 

The greedy method suggests that an algorithm works in stages, considering one input at a 

time. At each stage, a decision is made regarding whether a particular input is in an optimal 

solution. 

 

Greedy algorithms neither postpone nor revise the decisions (ie., no back tracking). 

Example: Kruskal’s minimal spanning tree. Select an edge from a sorted list, check, decide, 

and never visit it again. 

Application of Greedy Method: 
➢ Job sequencing with deadline 

➢ 0/1 knapsack problem 

➢ Minimum cost spanning trees 

➢ Single source shortest path problem. 

 
Algorithm for Greedy method 

Algorithm Greedy(a,n) 

//a[1:n] contains the n inputs. 

{ 

Solution :=0; 

For i=1 to n do 

{ 

X:=select(a); 

If Feasible(solution, x) then 

Solution :=Union(solution,x); 

} 

Return solution; 
} 

Selection → Function, that selects an input from a[] and removes it. The selected input’s 

value is assigned to x. 

Feasible → Boolean-valued function that determines whether x can be included into the 

solution vector. 

Union → function that combines x with solution and updates the objective function. 
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Knapsack problem 
 

The knapsack problem or rucksack (bag) problem is a problem in combinatorial optimization: Given a set of 

items, each with a mass and a value, determine the number of each item to include in a collection so that the total 

weight is less than or equal to a given limit and the total value is as large as possible 

 

 

There are two versions of the problems 
 

1. 0/1 knapsack problem 

2. Fractional Knapsack problem 

a. Bounded Knapsack problem. 

b. Unbounded Knapsack problem. 

 

Solutions to knapsack problems 
 

➢ Brute-force approach:-Solve the problem with a straight farward algorithm 

➢ Greedy Algorithm:- Keep taking most valuable items until maximum weight is reached 

or taking the largest value of eac item by calculating vi=valuei/Sizei 

➢ Dynamic Programming:- Solve each sub problem once and store their solutions in an 

array. 

 

➢ To find SSSP for directed graphs G(V,E) there are two different algorithms. 

 

➢ Bellman-Ford Algorithm 

➢ Dijkstra’s algorithm 

 

➢ Bellman-Ford Algorithm:- allow –ve weight edges in input graph. This algorithm 

either finds a shortest path form source vertex S∈V to other vertex v∈V or detect a – 
ve weight cycles in G, hence no solution. If there is no negative weight cycles are 

reachable form source vertex S∈V to every other vertex v∈V 

➢ Dijkstra’s algorithm:- allows only +ve weight edges in the input graph and finds a 

shortest path from source vertex S∈V to every other vertex v∈V. 

http://en.wikipedia.org/wiki/Combinatorial_optimization
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➢ Consider the above directed graph, if node 1 is the source vertex, then shortest path 

from 1 to 2 is 1,4,5,2. The length is 10+15+20=45. 
 

➢ To formulate a greedy based algorithm to generate the shortest paths, we must 

conceive of a multistage solution to the problem and also of an optimization measure. 
 

➢ This is possible by building the shortest paths one by one. 
 

➢ As an optimization measure we can use the sum of the lengths of all paths so far 

generated. 
 

➢ If we have already constructed ‘i’ shortest paths, then using this optimization measure, 

the next path to be constructed should be the next shortest minimum length path. 
 

➢ The greedy way to generate the shortest paths from Vo to the remaining vertices is to 

generate these paths in non-decreasing order of path length. 
 

➢ For this 1st, a shortest path of the nearest vertex is generated. Then a shortest path to 

the 2nd nearest vertex is generated and so on. 
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Algorithm for finding Shortest Path 

Algorithm ShortestPath(v, cost, dist, n) 

//dist[j], 1≤j≤n, is set to the length of the shortest path from vertex v to vertex j in graph g 

with n-vertices. 

// dist[v] is zero 

{ 

for i=1 to n do{ 

s[i]=false; 

dist[i]=cost[v,i]; 

} 

s[v]=true; 

dist[v]:=0.0; // put v in s 

for num=2 to n do{ 

// determine n-1 paths from v 

choose u form among those vertices not in s such that dist[u] is minimum. 

s[u]=true; // put u in s 

for (each w adjacent to u with s[w]=false) do 

if(dist[w]>(dist[u]+cost[u, w])) then 

dist[w]=dist[u]+cost[u, w]; 

} 
} 

 

 

Minimum Cost Spanning Tree: 
 

SPANNING TREE: - A Sub graph ‘n’ of o graph ‘G’ is called as a spanning tree if 

(i) It includes all the vertices of ‘G’ 

(ii) It is a tree 

 

Minimum cost spanning tree: For a given graph ‘G’ there can be more than one spanning 

tree. If weights are assigned to the edges of ‘G’ then the spanning tree which has the 

minimum cost of edges is called as minimal spanning tree. 
 

The greedy method suggests that a minimum cost spanning tree can be obtained by contacting 

the tree edge by edge. The next edge to be included in the tree is the edge that results in a 

minimum increase in the some of the costs of the edges included so far. 

 

There are two basic algorithms for finding minimum-cost spanning trees, and both are greedy 

algorithms 

→Prim’s Algorithm 

→Kruskal’s Algorithm 

Prim’s Algorithm: Start with any one node in the spanning tree, and repeatedly add the 

cheapest edge, and the node it leads to, for which the node is not already in the spanning tree. 
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PRIM’S ALGORITHM: - 
i) Select an edge with minimum cost and include in to the spanning tree. 

ii) Among all the edges which are adjacent with the selected edge, select the one with 

minimum cost. 

iii) Repeat step 2 until ‘n’ vertices and (n-1) edges are been included. And the sub graph 

obtained does not contain any cycles. 

 
Notes: - At every state a decision is made about an edge of minimum cost to be included 
into the spanning tree. From the edges which are adjacent to the last edge included in the 
spanning tree i.e. at every stage the sub-graph obtained is a tree. 
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Prim's minimum spanning tree algorithm 
Algorithm Prim (E, cost, n,t) 
// E is the set of edges in G. Cost (1:n, 1:n) is the 
// Cost adjacency matrix of an n vertex graph such that 
// Cost (i,j) is either a positive real no. or ∞ if no edge (i,j) exists. 
//A minimum spanning tree is computed and 
//Stored in the array T(1:n-1, 2). 
//(t (i, 1), + t(i,2)) is an edge in the minimum cost spanning tree. The final cost is returned 

{ 
Let (k, l) be an edge with min cost in E 
Min cost: = Cost (x,l); 
T(1,1):= k; + (1,2):= l; 

for i:= 1 to n do//initialize near 
if (cost (i,l)<cost (i,k) then n east (i): l; 
else near (i): = k; 
near (k): = near (l): = 0; 
for i: = 2 to n-1 do 

{//find n-2 additional edges for t 

let j be an index such that near (i) 0 & cost (j, near (i)) is minimum; 
t (i,1): = j + (i,2): = near (j); 
min cost: = Min cost + cost (j, near (j)); 
near (j): = 0; 
for k:=1 to n do // update near () 

if ((near (k) 0) and (cost {k, near (k)) > cost (k,j))) 
then near Z(k): = ji 
} 
return mincost; 
} 

 

The algorithm takes four arguments E: set  of  edges,  cost  is  nxn  adjacency  matrix  cost  of 
(i,j)= +ve integer, if an edge exists between i&j otherwise infinity. ‘n’ is no/: of vertices. ‘t’ is a  (n-
1):2matrix which consists of the edges of spanning tree. 
E = { (1,2), (1,6), (2,3), (3,4), (4,5), (4,7), (5,6), (5,7), (2,7) } 
n = {1,2,3,4,5,6,7) 
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i) The algorithm will start with a tree that includes only minimum cost edge of 

G. Then edges are added to this tree one by one. 
ii) The next edge (i,j) to be added is such that i is a vertex which is already included 

in the treed and j is a vertex not yet included in the tree and cost of i,j is minimum 

among all edges adjacent to ‘i’. 

iii) With each vertex ‘j’ next  yet  included in  the tree,  we assign  a value  near  ‘j’. The 

value near ‘j’ represents a vertex in the tree such that cost (j, near (j)) is minimum 

among all choices for near (j) 

iv) We define near (j):= 0 for all the vertices ‘j’ that are already in the tree. 

v) The next edge to include is defined by the vertex ‘j’ such that (near (j))  0 and cost 

of (j, near (j)) is minimum. 

Analysis: - 
The time required by the prince algorithm is directly proportional to the no/: of vertices. If a 
graph ‘G’ has ‘n’ vertices then the time required by prim’s algorithm is 0(n2) 
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Kruskal’s Algorithm: Start with no nodes or edges in the spanning tree, and repeatedly 

add the cheapest edge that does not create a cycle. 
In Kruskals algorithm for determining the spanning tree we arrange  the  edges  in  the 
increasing order of cost. 

i) All the edges are considered one by one in that order and deleted from the  graph and are 

included in to the spanning tree. 

ii) At every stage an edge is included; the sub-graph at a stage need not be a tree. Infect 

it is a forest. 

iii) At the end if we include ‘n’ vertices and n-1 edges  without forming cycles then we get a 

single connected component without any cycles  i.e.  a  tree  with  minimum cost. 

At every stage, as we include an edge in to the spanning tree, we get disconnected trees 
represented by various sets. While including an edge in to the spanning tree we need to 
check it does not form cycle. Inclusion of an edge (i,j) will form a cycle if i,j both are in same 
set. Otherwise the edge can be included into the spanning tree. 

Kruskal minimum spanning tree algorithm 
Algorithm Kruskal (E, cost, n,t) 

//E is the set of edges in G. ‘G’ has ‘n’ vertices 

//Cost {u,v} is the cost of edge (u,v) t is the set 
//of edges in the minimum cost spanning tree 

//The final cost is returned 

{ construct a heap out of the edge costs using heapify; 

for i:= 1 to n do parent (i):= -1 // place in different sets 

//each vertex is in different set {1} {1} {3} 

i: = 0; min cost: = 0.0; 

While (i<n-1) and (heap not empty))do 

{ 

Delete a minimum cost edge (u,v) from the heaps; and reheapify using adjust; 

j:= find (u); k:=find (v); 

if (jk) then 

{ i: = 1+1; 

+ (i,1)=u; + (i, 2)=v; 

mincost: = mincost+cost(u,v); 

Union (j,k); 
} 

} 

if (in-1) then write (“No spanning tree”); 

else return mincost; 

} 

 

Consider the above graph of , Using Kruskal's method the edges of this graph are considered 

for inclusion in the minimum cost spanning tree in the order (1, 2), (3, 6), (4, 6), (2, 6), (1, 4), 

(3, 5), (2, 5), (1, 5), (2, 3), and (5, 6). This corresponds to the cost sequence 10, 15, 20, 25, 

30, 35, 40, 45, 50, 55. The first four edges are included in T. The next edge to be considered 

is (I, 4). This edge connects two vertices already connected in T and so it is rejected. Next, 

the edge (3, 5) is selected and that completes the spanning tree. 
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Analysis: - If the no/: of edges in the graph is given by /E/ then the time for 
Kruskals algorithm is given by 0 (|E| log |E|). 



DEPARTMENT OF CSE                                                                                                        Page 10 of 13 

 

0/1 knapsack problem: 
 

Let there be     items,     to     where     has a value     and weight      . The maximum 

weight that we can carry in the bag is W. It is common to assume that all values and weights 

are nonnegative. To simplify the representation, we also assume that the items are listed in 

increasing order of weight. 

 

Maximize  subject to  

Maximize the sum of the values of the items in the knapsack so that the sum of the weights must be less 

than the knapsack's capacity. 

Greedy algorithm for knapsack 

Algorithm GreedyKnapsack(m,n) 
// p[i:n] and [1:n] contain the profits and weights respectively 

// if the n-objects ordered such that p[i]/w[i]>=p[i+1]/w[i+1], m→ size of knapsack and 

x[1:n]→ the solution vector 

{ 

For i:=1 to n do x[i]:=0.0 

U:=m; 

For i:=1 to n do 

{ 

if(w[i]>U) then break; 

x[i]:=1.0; 

U:=U-w[i]; 

} 

If(i<=n) then x[i]:=U/w[i]; 

} 

 

 
Ex: - Consider 3 objects whose profits and weights are defined as 
(P1, P2, P3) = ( 25, 24, 15 ) 
W1, W2, W3) = ( 18, 15, 10 ) 
n=3→number of objects 
m=20→Bag capacity 

 
Consider a knapsack of capacity  20.  Determine the optimum  strategy for  placing  the  objects 
in to the knapsack. The problem can be solved by the greedy approach where in the inputs 
are arranged according to selection process (greedy  strategy)  and  solve  the  problem  in 
stages. The various greedy strategies for the problem could be as follows. 

 
 

(x1, x2, x3) ∑ xiwi ∑ xipi 

(1, 2/15, 0) 2 
18x1+ x15   = 20 

15 

2 
25x1+ x 24 = 28.2 

15 

(0, 2/3, 1) 2 
x15+10x1= 20 

3 

2 
x 24 +15x1 = 31 

3 
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(0, 1, ½ ) 

1x15+ 
1 

x10 = 20 

2 
1x24+ 

1 
x15 = 31.5 

2 

(½, ⅓, ¼ ) ½ x 18+⅓ x15+ ¼ x10 = 16. 5 ½ x 25+⅓ x24+ ¼ x15 = 
12.5+8+3.75 = 24.25 

 

Analysis: - If we do not consider the time considered for sorting the inputs then all of the 
three greedy strategies complexity will be O(n). 

 

Job Sequence with Deadline: 
 

There is set of n-jobs. For any job i, is a integer deadling di≥0 and profit Pi>0, the profit Pi is 

earned iff the job completed by its deadline. 

 

To complete a job one had to process the job on a machine for one unit of time. Only one 

machine is available for processing jobs. 

 

A feasible solution for this problem is a subset J of jobs such that each job in this subset can 

be completed by its deadline. 

 

The value of a feasible solution J is the sum of the profits of the jobs in J, i.e., ∑i∈jPi 

An optimal solution is a feasible solution with maximum value. 

 
The problem involves identification of a subset of jobs  which  can  be  completed  by  its 
deadline. Therefore the problem suites the subset methodology and can be  solved  by  the 
greedy method. 
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Ex: - Obtain the optimal sequence for the following jobs. 

j1   j2 j3 j4 

(P1, P2, P3, P4) = (100, 10, 15, 27) 

 

(d1, d2, d3, d4) = (2, 1, 2, 1) 

n =4 

 

Feasible 

solution 

Processing 

sequence 

Value 

j1 j2 

(1, 2) 
(2,1) 100+10=110 

(1,3) (1,3) or (3,1) 100+15=115 
(1,4) (4,1) 100+27=127 

(2,3) (2,3) 10+15=25 

(3,4) (4,3) 15+27=42 

(1) (1) 100 

(2) (2) 10 

(3) (3) 15 
(4) (4) 27 

 
 

In the example solution ‘3’ is the optimal. In this solution only jobs 1&4 are processed and 

the value is 127. These jobs must be processed in the order j4 followed by j1. the process of 

job 4 begins at time 0 and ends at time 1. And the processing of job 1 begins at time 1 and 

ends at time2. Therefore both the jobs are completed within their deadlines. The optimization 

measure for determining the next job to be selected in to the solution is according to the 

profit. The next job to include is that which increases ∑pi the most, subject to the constraint 

that the resulting “j” is the feasible solution. Therefore the greedy strategy is to consider the 

jobs in decreasing order of profits. 



DEPARTMENT OF CSE                                                                                                        Page 13 of 13 

 

The greedy algorithm is used to obtain an optimal solution. 

 

We must formulate an optimization measure to determine how the next job is chosen. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The size of sub set j must be less than equal to maximum deadline in given list. 

 

 
 

Single Source Shortest Paths: 
 

 

➢ Graphs can be used to represent the highway structure of a state or country with 

vertices representing cities and edges representing sections of highway. 

➢ The edges have assigned weights which may be either the distance between the 2 

cities connected by the edge or the average time to drive along that section of 

highway. 

➢ For example if A motorist wishing to drive from city A to B then we must answer the 

following questions 

o Is there a path from A to B 

o If there is more than one path from A to B which is the shortest path 
➢ The length of a path is defined to be the sum of the weights of the edges on that path. 

 

Given a directed graph G(V,E) with weight edge w(u,v). e have to find a shortest path from 

source vertex S∈v to every other vertex v1∈ v-s. 

 

algorithm js(d, j, n) 

//d→ dead line, j→subset of jobs ,n→ total number of jobs 

// d[i]≥1 1 ≤ i ≤ n are the dead lines, 

// the jobs are ordered such that p[1]≥p[2]≥---≥p[n] 

//j[i] is the ith job in the optimal solution 1 ≤ i ≤ k, k→ subset range 

{ 

d[0]=j[0]=0; 

j[1]=1; 

k=1; 

for i=2 to n do{ 

r=k; 

while((d[j[r]]>d[i]) and [d[j[r]]≠r)) do 

r=r-1; 

if((d[j[r]]≤d[i]) and (d[i]> r)) then 

{ 

for q:=k to (r+1) setp-1 do j[q+1]= j[q]; 

j[r+1]=i; 

k=k+1; 

} 

} 

return k; 

} 


